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 Discussion and Future Work

Problem Definition 
Objectives: This work aims at learning global, General-Purpose Location Embeddings, which
use openly available, globally distributed satellite imagery with their geographic coordinates
to efficiently summarize the implicit characteristics of any given location and incorporate
similarities over space, and to conveniently improve analysis, generalization, and prediction
performance on geo-related and location-dependent downstream tasks.
Motivations：

The spatial patterns governing different geographic data
modalities are often complex and non-linear.
Patterns extracted from satellite images can describe the
unique characteristics of locations, by capturing their
natural and built environment.
Models trained on raw coordinates solely rely upon spatial
dependencies without considering any ground conditions,
such as local elevation patterns or climate zones.
Models trained on full images, while able to capture ground
conditions, require expensive data preprocessing and
training of large vision models. 
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Reference place:Hong Kong Qinghai-Tibet Plateau Congo Basin

(C) Global Location Similarity Heatmap (with reference location)

(D) Geo-Localization

Predicted:(22.1983, 113.9430)
True:（22.2842，114.1378）

Predicted:(39.9132, 116.3895)
True:（39.9166, 116.3907）

Predicted:(48.8593, 2.2924)
True:（48.8582, 2.2945）

where

[3]

(A) Classification:
Country Code Prediction

(B) Regression: 
Annual Mean Precipitation Prediction

Our pretraining approach focuses mainly on integrating the visual modality. However, it is feasible to
develop a multimodal context encoder incorporating additional location-specific data modalities, such as
audio from acoustic sensors or text from geolocated social media posts, to facilitate multi-source
geospatial learning.
While seasonal variations in images can be recognized, the model did not explicitly incorporate time as an
embedded component within a space-time encoder, such as in a function of the form f(lat, lon, time).
The model's capacity to enhance its fine-grained discriminative ability between similar locations is
constrained by the spatial scales of its pre-trained weights. This constraint is particularly evident when
addressing high-resolution or localized phenomena, where the model may struggle to differentiate iconic
landmarks, such as distinguishing the actual Eiffel Tower in Paris from its replicas elsewhere.
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Pineline:

(D) We utilize the fine-tuned vision encoder to encode input images, projecting them into the same dimensional
space as the location embeddings. We then compute the cosine similarity between the image and location
embeddings corresponding to the 100,000 points selected in (C). This process allows us to match the features of
a query image against the gallery of GPS embeddings, with the most similar GPS embedding being selected as the
predicted GPS coordinates.

Conclusion: The results demonstrate that the location encoder effectively captures both natural geographic
features, such as climate, topography, and vegetation, as well as anthropogenic factors, including human
activities and administrative boundaries, aligning closely with established geographic and socio-political realities.
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Methodology：

(A) Accuracy (test dataset): >85%. Prediction errors are primarily concentrated in regions characterized by
complex geographical and climatic transitions, such as coastal areas and continental shelves with hybrid land-
sea climates, and regions with intricate geopolitical boundaries, particularly in Africa and Europe.
(B) The map shows the absolute error between the predicted precipitation and the ground truth. The maximum
recorded ground truth is nearly 6000 mm, while the maximum prediction error is under 500 mm. Larger
prediction errors are often observed in regions with high actual precipitation values. This pattern may result
from the model's conservative predictions, which can lead to substantial discrepancies in areas where the
actual precipitation is exceptionally high.

Spherical Harmonics basis (SH) functions
The traditional latitude and longitude coordinate system tends to overrepresent regions near the poles due
to inherent projection distortions. To address these distortions and obtain a more accurate representation
of the Earth's surface, we employ the Spherical Harmonics (SH) functions to encode the coordinate (λ,ϕ): 

Both encoders are trained using the simple yet highly effective CLIP[2] objective, defined as follows:
Alignment 

This objective aligns each coordinate c  with the corresponding image I  while contrasting it against all
other images I          . Specifically, the local alignment loss L      is defined as:

i i
1,...,N Loc

...
based on the 
number of l,m

(C) The heatmaps displaying the cosine similarity of a set of 100,000 uniformly distributed points across the
Earth's surface to three reference points—Hong Kong, the Qinghai-Tibet Plateau, and the Congo Basin—based on
location embeddings generated by our trained location encoder, with warmer colors indicating higher similarity
to the reference location.

l and m serve as the degree(complexity/frequency) and order(oscillations in longitude) of the SH functions,
ω   are the coefficients that adjust each harmonic's contribution. P  is the associated Legendre polynomial.l
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The image alignment loss L      is defined analogously by swapping the roles of the coordinate and image
terms. τ is a temperature parameter controlling the sharpness of the probability distribution.
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